Illuminated pushbutton

Illuminated pushbutton actuator, Front dimension $18.8 \times 18.8 \mathrm{~mm}$

92 PCB pushbuttons

Front protection	Front	Pressure plate	Lens	Switching action	Part No.	$\begin{aligned} & \text { 읃 } \\ & \text { 든 } \\ & \overline{3} \frac{\pi}{0} \end{aligned}$	Weight
IP 40	Plastic black		Plastic smoked	B	92-458.100	1	0.003 kg
			Plastic red	B	92-458.200	1	0.003 kg
			Plastic orange	B	92-458.300	1	0.003 kg
			Plastic yellow	B	92-458.400	1	0.003 kg
			Plastic green	B	92-458.500	1	0.003 kg
			Plastic blue	B	92-458.600	1	0.003 kg
			Plastic colourless	B	92-458.700	1	0.003 kg

Switching action: $B=$ Momentary

Wiring diagram 1

92
 PCB pushbuttons

Illuminated pushbutton actuator IP 40

Equipment consisting of (schematic overview)
Lens page 14

Actuator

Bezel
page 15

Mounting flange
page 19

LED
page 18

Switching element

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

Front	Switching action	Part No.	$\begin{aligned} & \text { 으N } \\ & \text { 은 } \\ & \text { c皆 } \end{aligned}$	Weight
	40, Front dim			
Plastic white	B	92-350.000	1	0.003 kg
Plastic black	B	92-450.000	1	0.003 kg

Switching action: $B=$ Momentary

E---

Wiring diagram 1

Illuminated pushbutton actuator IP 67

Illuminated pushbutton actuator IP 40, square $18.8 \times 18.8 \mathrm{~mm}$

Plastic white	B	$\mathbf{9 2 - 3 4 0 . 0 0 0}$	1	0.003 kg
Plastic black	B	$\mathbf{9 2 - 4 4 0 . 0 0 0 ~}$	1	0.003 kg

Switching action: $\mathrm{B}=$ Momentary

E---

Wiring diagram 1

Accessories

Front

Lens plate IP 67

Additional Information

- Material plastic

Product attribute	Dimension	Pressure plate	Part No.	Weight
Lens plate for pushbutton and indicator IP 67				
non-illuminative	$12 \times 12 \mathrm{~mm}$	black opaque	92-941.000	0.001 kg
		grey opaque	92-941.800	0.001 kg
illuminative	$12 \times 12 \mathrm{~mm}$	red transparent	92-941.200	0.001 kg
		orange transparent	92-941.300	0.001 kg
		yellow transparent	92-941.400	0.001 kg
		green transparent	92-941.500	0.001 kg
		blue transparent	92-941.600	0.001 kg
		colourless transparent	92-941.700	0.001 kg

Lens IP 40

Additional Information

- Material plastic
- With white marking plate

Product attribute	Dimension	Lens	Part No.	Weight
Lens for pushbutton and indicator IP 40				
non-illuminative	$13.2 \times 13.2 \mathrm{~mm}$	black opaque	92-956.000	0.001 kg
		grey opaque	92-956.800	0.001 kg
		white opaque	92-956.900	0.001 kg
illuminative	$13.2 \times 13.2 \mathrm{~mm}$	red translucent	92-956.200	0.001 kg
		orange translucent	92-956.300	0.001 kg
		yellow translucent	92-956.400	0.001 kg
		green translucent	92-956.500	0.001 kg
		blue translucent	92-956.600	0.001 kg
		smoked transparent	92-958.100	0.001 kg
		red transparent	92-958.200	0.001 kg
		orange transparent	92-958.300	0.001 kg
		yellow transparent	92-958.400	0.001 kg
		green transparent	92-958.500	0.001 kg
		blue transparent	92-958.600	0.001 kg
		colourless transparent	92-958.700	0.001 kg

Bezel IP 40

Material	Colour	Part No.	Weight
Front bezel for pushbutton and indicator IP 40			
Plastic	black	92-912.0	0.001 kg
	white	92-912.9	0.001 kg

Blind plug

Mounting cut-outs

92

Accessories

Rear side

Illumination element PCB

The component layouts you will find from page \{\$1=BR92_KAZE_Zeichnung\}

Switching element PCB illuminative

Additional Information

- The customer has to decide what series resistor shall be used to the LED

The component layouts you will find from page \{\$1=BR92_KAZE_Zeichnung\}

Wiring diagram 1

Spacer

Additional Information

- Adjustable for front plate thickness of 2/2.5/3/3.5/4 mm
- When fitting, ensure that back of panel is free of grease and dirt

PCB assembled

Additional Information

- For discrete switching applications including switching element and mounting flange, soldering terminal (assembled PCB incl. series resistor and LED on request)

Part No.	
	PCB assembled
92-981.0	0.003 kg

Illumination

Single-LED, T1 Bi-Pin

Additional Information

- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length scattering caused by LED manufacturing processes may cause slight variations in the illumination

LED colour	Forward voltage typ.	Lumi. intensity	Dom. wavelength	Part No.	Weight
Single-LED					
Single-LED red	2.1 VDC @ 20 mA	200 mcd	625 nm	10-2602.3202L	0.001 kg
Single-LED orange	2.1 VDC @ 20 mA	220 mcd	590 nm	10-2602.3203L	0.001 kg
Single-LED yellow	3.3 VDC @ 20 mA	500 mcd	570 nm	10-2602.3204L	0.001 kg
Single-LED green	3.5 VDC @ 20 mA	250 mcd	525 nm	10-2602.3205L	0.001 kg
Single-LED blue	3.5 VDC @ 20 mA	450 mcd	470 nm	10-2602.3206L	0.001 kg
Single-LED white	3.3 VDC @ 20 mA	600 mcd	$x=0.29 / y=0.31 \mathrm{~nm}$	10-2602.3209L	0.001 kg

Anti-twist ring

Additional Information

- For front panel thickness max. 2 mm

Mounting flange

Dimensions

Lens remover

Additional Information

- For lens IP 40 only

92

Accessories

Mounting tool

Additional Information

- For tightening or loosening of the fixing nut

Dismantling tool

Additional Information

- For actuator dismantling of switching element, illumination element and mounting flange

Part No.		
		Weight
	Dismantling tool	
92-971.0		0.002 kg

Drawings

Single-LED	Single-LED
Drilling plan (element side)	Drilling plan (element side)
A Fixing holes for mounting flange (92-960.0) B Holes for LED C Holes for centering pins	A Fixing holes for mounting flange (92-960.0) B Holes for LED C Holes for contact pins Pad max. $\varnothing 2.5 \mathrm{~mm}$ Through-connection recommended
Bauteilelayout 1	Bauteilelayout 2

Pushbutton and Illuminated pushbutton

Switching system

Short-travel switching system with 2 independent contact points and tactile operation.
Guarantees reliable switching even of very light loads.
Fitted with 1 normally open contact.

Material

Lens

Polycarbonate (PC)

Front bezel

Thermoplastic Elastomer (TPE)

Frame

Thermoplastic Polyester (PBT)

Material of contact

Gold (Au)

Switching element

Thermoplastic Polyester (PET, PBT) and Polyacetale (POM)

Actuator housing

Thermoplastic Polyester (PBT)

Mechanical characteristics

Tightening torque

Fixing screw 40 Ncm recommended
Fixing nut max. 50 Ncm

Actuating force

$2.7 \mathrm{~N} \pm 1 \mathrm{~N}$ measured at the switching element
5 N measured at the lens

Actuating travel

Switching element 0.4 mm

Rebound time

$\leq 1 \mathrm{~ms}$

Resistance to heat of soldering

$250^{\circ} \mathrm{C}$, 3 s (PCB assembly)
$320^{\circ} \mathrm{C}, 3 \mathrm{~s}$ (when using a soldering iron)

Mechanical lifetime

≥ 1 Million operations as per IEC 60512-5-9a

Electrical characteristics

Contact resistance

Starting value (initial) $\leq 100 \mathrm{~m} \Omega$ as per IEC 60512-2-2b

Isolation resistance

$\geq 10^{9} \Omega$ between all terminals at 100VDC, as per IEC 60512-2-3a

Electrical life

≥ 500000 operations at $42 \mathrm{VDC}, 50 \mathrm{~mA}$ as per IEC 60512-5-9c.
When attention is paid to the direction of current flow from terminal $3 / 4$ to $1 / 2$ the electrical life can be prolonged.

Electrostatic discharge (ESD)

15 kV

Switch rating

Switching voltage min. 50 mV AC/DC
max. 42 V AC/DC
Switching current min. $10 \mu \mathrm{~A} A C / D C$ max. $100 \mathrm{~mA} A C / D C$
Power rating max. 2W

Electric strength

500 VAC, 50 Hz , 1 min, as per IEC 60512-2-4a

Environmental conditions

Storage temperature

$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Operating temperature

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Front protection

Switching element IP 40 (fluxproof to DIN 41640 Part 84)
front IP 67 or IP 40

Shock resistance

(semi-sinusoidal)
max. $500 \mathrm{~m} / \mathrm{s}^{2}$, pulse width $11 \mathrm{~ms}, 3-$ axis,
as per EN IEC 60068-2-27

Vibration resistance

(sinusoidal)
max. $100 \mathrm{~m} / \mathrm{s}^{2}$ at $10 \mathrm{~Hz} \ldots 500 \mathrm{~Hz}, 10$ cycles, 3 -axis, as per EN IEC 60068-2-6

Approvals
Declaration of conformity
CE

EAO reserves the right to alter specifications without further notice.

General notes

If desired, the actuators of the series 92 can be supplied ready marked. With your order please enclose a list of the desired markings or a drawing, showing the type or size of script or the symbols desired.

1. Laser engraving (Fig. 1)

In addition to the most commonly used world languages, in DIN1451-3 close spacing, other typefaces are available as Scandinavian, Slavic, Greek, Russian and Polish. Red, blue and black lenses are filled with white colour. Other colour lenses are filled in black. Standard height of letters is 2 mm . If the height is not specified, we will supply 2 mm engraved letters.

2. Hot stamping (Fig. 1)

For larger series it is worth considering markings by means of hot stamping. We will pleased to advise you. For letters and figures, typefaces with $2.5 \mathrm{~mm}, 3 \mathrm{~mm}$ and 4 mm are available.

3. Film inserts (Fig. 2)

Instead of using engraving, the actuator can be fitted with transparent film inserts. However, for this purpose the use of transparent lens caps is recommended. If smoked lens caps are used the lettering does not become visible until the LED is alight. Max. size of film insert $11.4 \times 11.4 \mathrm{~mm}$ for IP $4010.4 \times 10.4 \mathrm{~mm}$ for IP 67 Film thickness 0.2 mm .

All dimensions in mm

Height of letters \mathbf{h}	Number of lines	Number of capital letters per line (target value)	Number of small letters per line (target value)
3	2	$5-6$	6
4	2	4	4
5	1	3	$3-4$
6	1	$2-3$	3
8	1	2	2

Fig. 1
Fig. 2

Suppressor circuits

When switching inductive loads such as relays, DC motors, and DC solenoids, it is always important to absorb surges (e.g. with a diode) to protect the contacts. When these inductive loads are switched off, a counter emf can severely damage switch contacts and greatly shorten lifetime.

Fig. 1 shows an inductive load with a free-wheeling diode connected in parallel. This free-wheeling diode provides a path for the inductor current to flow when the current is interrupted by the switch. Without this free-wheeling diode, the voltage across the coil will be limited only by dielectric breakdown voltages of the circuit or parasitic elements of the coil. This voltage can be kilovolts in amplitude even when nominal circuit voltages are low (e.g. 12VDC) see Fig. 2.

The free-wheeling diode should be chosen so that the reverse breakdown voltage is greater than the voltage driving the inductive load. The DC blocking voltage (VR) of the free-wheeling diode can be found in the datasheet of a diode. The forward current should be equal or greater than the maximum current flowing through the load.

To get an efficient protection, the free-wheeling diode must be connected as close as possible to the inductive load!

Note for soldering

Process parameter for wave soldering

Basic specification for wave soldering J-STD 75 W4C

Maximum temperature on the component side of the pcb
$120^{\circ} \mathrm{C}$
(Temperature must not exceed during the entire processing)
Preheating phase (t1 ... t2)
Ramp up
Ramp up to maximum temperature ($\mathrm{t} 2 \ldots \mathrm{t}$)
Maximum temperature on the soldering side (Temp 3)
Maximum time of soldering process (t3 ... t4)
Ramp down at $170^{\circ} \mathrm{C}$:

70 ... 120 sec
typ. $+1^{\circ} \mathrm{C} / \mathrm{sec}$
not defined
$250^{\circ} \mathrm{C}$
3 sec
typ. $-2^{\circ} \mathrm{C} / \mathrm{sec}$

Temperature curve wave soldering

Iron soldering

Basic specification for iron soldering IEC 60068-2-20
Maximum temperature at tip of iron: $\quad 320^{\circ} \mathrm{C}$
Maximum soldering time: 3 sec

Cleaning/Lacquering

The switching elements are not sealed. Cleaning up the PCB may damage the contacts in the switching elements. For this reason, the following points should be noted:

- When soldering make sure that the flux does not pass on the upper side of the PCB.
- When cleaning the PCB with detergents ensure that no dust or other debris may get inside of the switching elements.
- Ensure that no lacquer penetrates into the interior of the switching element when lacquering the PCB.

Storage of components

To obtain the optimum solderability of the components, the following points should be noted during storage:

- Do not store components in locations with high temperature or humidity.
- Do not expose components to corrosive gases.
- Avoid direct sunlight for a long period.

92
 Application guidelines

Arrangement mounting flange

The arrangement of the mounting flanges and their number is determined by the size of the front panel or PCB. To ensure uniform, tactile switching, we recommend a layout of the flanges as per adjacent sketch.

For large PCBs with several switching elements we recommend the following procedure:

1. Fit the actuator to the front panel.
2. Clip the mounting flange to the rear of the intended actuator.
3. Screw the PCB with the components soldered to it to the assembled mounting flange.

This arrangement applies to PCBs 1.6 mm thick.

Dismantling mounting flange

The tool Part No. 92-971.0 must be used for removing the mounting flange from the actuator. Before removing the flange, the PCB fixing screws must be loosened.

If the number of actuators is insufficient, use the spacer Part. No. 92-965.0 which can be attached to the front panel.

The spacer can be adjusted to the following front panel thicknesses: $1.5 / 2 / 2.2 / 3 / 3.5 / 4 \mathrm{~mm}$ and can be stuck to the back of the panel free of dirt and grease.

